Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 10(16): 8770-8792, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32884656

RESUMO

Ecological release from herbivory due to chemical novelty is commonly predicted to facilitate biological invasions by plants, but has not been tested on a community scale. We used metabolomics based on mass spectrometry molecular networks to assess the novelty of foliar secondary chemistry of 15 invasive plant species compared to 46 native species at a site in eastern North America. Locally, invasive species were more chemically distinctive than natives. Among the 15 invasive species, the more chemically distinct were less preferred by insect herbivores and less browsed by deer. Finally, an assessment of invasion frequency in 2,505 forest plots in the Atlantic coastal plain revealed that, regionally, invasive species that were less preferred by insect herbivores, less browsed by white-tailed deer, and chemically distinct relative to the native plant community occurred more frequently in survey plots. Our results suggest that chemically mediated release from herbivores contributes to many successful invasions.

2.
Ecology ; 101(8): e03063, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32239510

RESUMO

The role of tree diversity in restored forests and its impact on key ecological processes like growth and resistance to herbivory has become increasingly important. We analyzed height growth and white-tailed deer Odocoileus virginianus browsing damage to saplings of 16 broadleaved tree species in a large-scale (13 ha) reforestation experiment in Maryland, USA, where we manipulated tree diversity in 70 1,225-m2 plots. After four growing seasons, higher plot-level tree richness led to increased deer browsing damage (i.e., associational susceptibility). Despite increased deer damage to saplings in mixed plots, tree richness had no overall effect on sapling height growth. However, diversity-height relationships were related to species functional traits. Light demanding species with large leaves and faster growth rates had reduced heights in mixtures, whereas shade-tolerant, slower-growing species generally had either increased or unchanged height growth in diverse tree communities, likely related to increased canopy closure in mixtures relative to monocultures. We show that tree diversity can improve growth of late successional species despite exacerbated mammalian herbivore damage. By facilitating the establishment of species with a range of life-history strategies, increased tree diversity may enhance ecosystem multi-functionality in the early stages of forest restoration.


Assuntos
Cervos , Árvores , Animais , Biodiversidade , Ecossistema , Florestas
3.
Glob Chang Biol ; 24(11): 5218-5230, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30270555

RESUMO

Human-caused shifts in carbon (C) cycling and biotic exchange are defining characteristics of the Anthropocene. In marine systems, saltmarsh, seagrass, and mangrove habitats-collectively known as "blue carbon" and coastal vegetated habitats (CVHs)-are a leading sequester of global C and increasingly impacted by exotic species invasions. There is growing interest in the effect of invasion by a diverse pool of exotic species on C storage and the implications for ecosystem-based management of these systems. In a global meta-analysis, we synthesized data from 104 papers that provided 345 comparisons of habitat-level response (plant and soil C storage) from paired invaded and uninvaded sites. We found an overall net effect of significantly higher C pools in invaded CVHs amounting to 40% (±16%) higher C storage than uninvaded habitat, but effects differed among types of invaders. Elevated C storage was driven by blue C-forming plant invaders (saltmarsh grasses, seagrasses, and mangrove trees) that intensify biomass per unit area, extend and elevate coastal wetlands, and convert coastal mudflats into C-rich vegetated habitat. Introduced animal and structurally distinct primary producers had significant negative effects on C pools, driven by herbivory, trampling, and native species displacement. The role of invasion manifested differently among habitat types, with significant C storage increases in saltmarshes, decreases in seagrass, and no significant effect in mangroves. There were also counter-directional effects by the same species in different systems or locations, which underscores the importance of combining data mining with analyses of mean effect sizes in meta-analyses. Our study provides a quantitative basis for understanding differential effects of invasion on blue C habitats and will inform conservation strategies that need to balance management decisions involving invasion, C storage, and a range of other marine biodiversity and habitat functions in these coastal systems.


Assuntos
Ciclo do Carbono , Carbono , Ecossistema , Espécies Introduzidas , Animais , Biodiversidade , Biomassa , Sequestro de Carbono , Humanos , Plantas , Poaceae , Solo , Áreas Alagadas
4.
Ecology ; 98(10): 2513-2520, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28779524

RESUMO

Recent climate warming has led to asynchronous species migrations, with major consequences for ecosystems worldwide. In woody communities, localized microclimates have the potential to create feedback mechanisms that can alter the rate of species range shifts attributed to macroclimate drivers alone. Mangrove encroachment into saltmarsh in many areas is driven by a reduction in freeze events, and this encroachment can further modify local climate, but the subsequent impacts on mangrove seedling dynamics are unknown. We monitored microclimate conditions beneath mangrove canopies and adjacent open saltmarsh at a freeze-sensitive mangrove-saltmarsh ecotone and assessed survival of experimentally transplanted mangrove seedlings. Mangrove canopies buffered night time cooling during the winter, leading to interspecific differences in freeze damage on mangrove seedlings. However, mangrove canopies also altered biotic interactions. Herbivore damage was higher under canopies, leading to greater mangrove seedling mortality beneath canopies relative to saltmarsh. While warming-induced expansion of mangroves can lead to positive microclimate feedbacks, simultaneous fluctuations in biotic drivers can also alter seedling dynamics. Thus, climate change can drive divergent feedback mechanisms through both abiotic and biotic channels, highlighting the importance of vegetation-microclimate interactions as important moderators of climate driven range shifts.


Assuntos
Avicennia , Microclima , Plântula , Áreas Alagadas , Mudança Climática , Rhizophoraceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...